Loss of protein kinase Cepsilon results in impaired cutaneous wound closure and myofibroblast function.

نویسندگان

  • Andrew Leask
  • Xu Shi-Wen
  • Korsa Khan
  • Yunliang Chen
  • Alan Holmes
  • Mark Eastwood
  • Christopher P Denton
  • Carol M Black
  • David J Abraham
چکیده

Cutaneous wound repair requires the de novo induction of a specialized form of fibroblast, the alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblast, which migrates into the wound where it adheres to and contracts extracellular matrix (ECM), resulting in wound closure. Persistence of the myofibroblast results in scarring and fibrotic disease. In this report, we show that, compared with wild-type littermates, PKCepsilon-/- mice display delayed impaired cutaneous wound closure and a reduction in myofibroblasts. Moreover, both in the presence and absence of TGFbeta, dermal fibroblasts from PKCepsilon-/- mice cultured on fibronectin show impaired abilities to form ;supermature' focal adhesions and alpha-SMA stress fibers, and reduced pro-fibrotic gene expression. Smad3 phosphorylation in response to TGFbeta1 was impaired in PKCepsilon-/- fibroblasts. PKCepsilon-/- fibroblasts show reduced FAK and Rac activation, and adhesive, contractile and migratory abilities. Overexpressing constitutively active Rac1 rescues the defective FAK phosphorylation, cell migration, adhesion and stress fiber formation of these PKCepsilon-/- fibroblasts, indicating that Rac1 operates downstream of PKCepsilon, yet upstream of FAK. These results suggest that loss of PKCepsilon severely impairs myofibroblast formation and function, and that targeting PKCepsilon may be beneficial in selectively modulating wound healing and fibrotic responses in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed cutaneous wound closure in HO-2 deficient mice despite normal HO-1 expression

Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO-1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO-2 deficient mice is impaired with exorbitant inflammation and absence of HO-1...

متن کامل

Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing.

The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role i...

متن کامل

Pyk2 contributes to reepithelialization by promoting MMP expression. Focus on "Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice".

Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capac...

متن کامل

Negative Regulation of GADD34 on Myofibroblasts during Cutaneous Wound Healing

The growth arrest and DNA damage-inducible protein, GADD34, has been proved to be involved in TGF-β signaling pathway and correlates with cell death, which are two important mechanisms in regulating myofibroblast differentiation and apoptosis during tissue repair. But roles of GADD34 in myofibroblasts differentiation and apoptosis remain unknown. To investigate the function of GADD34 in these p...

متن کامل

Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3

Hyaluronan (HA) is an abundant matrix molecule, the function of which in the skin remains to be fully defined. To explore the roles of HA in cutaneous injury responses, double-knockout mice (abbreviated as Has1/3 null) that lack two HA synthase enzymes (Has1 and Has3), but still express functional Has2, were used in two types of experiments: (i) application of 12-O-tetradecanoylphorbol-13-aceta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2008